7 research outputs found

    Attention Model Based Progressive Image Transmission

    No full text
    Progressive image transmission provides a convenient user interface when images are transmitted slowly. However, most of the existing PIT techniques only considered the objective quality of the reconstructed image. Here we present an attention model based progressive image transmission approach to improve the subjective quality of the transmission process. We use both bottom-up image features and top-down semantic information to extract the regions of interest and also propose a new ROI coding scheme based on JPEG2000 to control the trade-off between the transmission of ROI and background. Experiments have shown the efficiency of our approach. 1

    Honey Bee Foraging Decisions Influenced by Pear Volatiles

    No full text
    The interactions between plants and pollinators are complex. Flower volatiles as special olfactory cues could influence the foraging choices of pollinators. Here, we conducted bioassays to evaluate the role of flower volatiles on the attraction of honey bees (native Apis cerana and exotic Apis mellifera) to pears (native Pyrus bretschneideri and exotic Pyrus communis). Chemical and electrophysiological approaches were used to determine flower volatiles and evaluate the antennal responses of honey bees to volatiles from pear flowers. Bioassays demonstrated that flower volatiles were crucial for the attraction of honey bees to pear flowers; honey bees preferred to forage on P. communis flowers (p > 0.05), with approximately 64.37 ± 0.02% (A. mellifera) and 62.10 ± 0.02% (A. cerana) foraging on P. communis. Flowers of P. communis and P. bretschneideri yielded 27 and 31 compounds, respectively, with 17 of them being common. Honey bee antennae responded to 16 chemicals, including 5 contained in both pear species: 1-nonanol, linalool, methyl 2-hydroxy-3-methylpentanoate, methyl L-isoleucinate, and α-farnesene. In addition, there were 8 electrophysiologically active compounds in P. bretschneideri: methyl L-valine ester, benzaldehyde, 6-methyl-5-hepten-2-one, isophorone, 2-methyl octane, longicyclene, longifolene, and caryophyllene; and 3 electrophysiologically active compounds in P. communis: β-ocimene, 4-oxoisophorone and lilac alcohol D. In conclusion, our study demonstrated the significant impact of pear flower volatiles on honey bee foraging choices. This knowledge provides a basis for the selection of honey bees for pear pollination and lays a foundation for further study of the chemical communication of pear attractiveness to honey bees
    corecore